Suberoylanilide hydroxamic acid sensitizes human oral cancer cells to TRAIL-induced apoptosis through increase DR5 expression.

نویسندگان

  • Cheng-Chang Yeh
  • Yi-Ting Deng
  • De-Yuan Sha
  • Michael Hsiao
  • Mark Yen-Ping Kuo
چکیده

Suberoylanilide hydroxamic acid has been shown to selectively induce tumor apoptosis in cell cultures and animal models in several types of cancers and is about as a promising new class of chemotherapeutic agents. In addition, suberoylanilide hydroxamic acid showed synergistic anticancer activity with radiation, cisplatin, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in some cancers. Here, we report suberoylanilide hydroxamic acid also induced apoptosis in human oral cancer cells. Western blotting showed suberoylanilide hydroxamic acid increased Fas, Fas ligand, DR4, and DR5 protein expression and activated caspase-8 and caspase-9. The apoptosis was almost completely inhibited by caspase-8 inhibitor Z-IETD-FMK and attenuated by caspase-9 inhibitor Z-LEHD-FMK. Human recombinant DR5/Fc chimera protein but not Fas/Fc or DR4/Fc significantly inhibited apoptosis induced by suberoylanilide hydroxamic acid. These results suggest that suberoylanilide hydroxamic acid induces apoptosis mainly through activation of DR5/TRAIL death pathway. Furthermore, subtoxic concentrations of suberoylanilide hydroxamic acid sensitize two TRAIL resistant human oral cancer cells, SAS and Ca9-22, to exogenous recombinant TRAIL-induced apoptosis in a p53-independent manner. Combined treatment of suberoylanilide hydroxamic acid and TRAIL may be used as a new promising therapy for oral cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suberoylanilide hydroxamic acid (Zolinza/vorinostat) sensitizes TRAIL-resistant breast cancer cells orthotopically implanted in BALB/c nude mice.

The purpose of this study was to examine whether histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA; Zolinza/vorinostat) could sensitize tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant breast carcinoma in vivo. BALB/c nude mice were orthotopically implanted with TRAIL-resistant MDA-MB-468 cells and treated i.v. with SAHA, TRAIL, or SAHA followed by TRA...

متن کامل

Histone deacetylase inhibitors enhance lexatumumab-induced apoptosis via a p21Cip1-dependent decrease in survivin levels.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in malignant cells by binding to the death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Several agents that therapeutically exploit this phenomenon are being developed. We investigated the anticancer activity of two novel, highly specific agonistic monoclonal antibodies to TRAIL-R1 (mapatumumab, HGS...

متن کامل

Silibinin sensitizes TRAIL-mediated apoptosis by upregulating DR5 through ROS-induced endoplasmic reticulum stress-Ca2+-CaMKII-Sp1 pathway

In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, ...

متن کامل

Depletion of CABYR-a/b sensitizes lung cancer cells to TRAIL-induced apoptosis through YAP/p73-mediated DR5 upregulation

Our previous study revealed that knockdown of CABYR-a/b increases the chemosensitivity of lung cancer cells through inactivation of Akt. Here, we demonstrated that depletion of CABYR-a/b significantly increased DR5 expression and sensitized lung cancer cells to TRAIL-induced apoptosis in vitro and/or in vivo. Importantly, treatment with AD5-10, a DR5-specific agonistic monoclonal antibody, was ...

متن کامل

Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo.

PURPOSE The histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), has multiple antitumor effects against a variety of human cancers. EXPERIMENTAL DESIGN We treated several anaplastic and papillary thyroid cancer cell lines with SAHA to determine if it could inhibit the growth of these cells in vitro and in vivo. RESULTS SAHA effectively inhibited 50% clonal growth of the an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2009